
A Graph-based Multi-agent Planning Algorithm with QoS Guarantees

Jian Feng Zhang, Xuan Thang Nguyen and Ryszard Kowalczyk
Centre for Information Technology Research

Swinburne University of Technology
Melbourne VIC 3122, Australia

{jfzhang, xnguyen, rkowalczyk}@ict.swin.edu.au

Abstract

Many existing planning approaches assume the existence
of a centralized planner that has complete information of its
planning problem. However, with the increasing popular-
ity of distributed paradigm today, a planning problem may
span across the boundaries of different organizations. Con-
sequently, such a problem is difficult to be managed by any
single organization. In this paper, we propose a new graph
based approach for distributed planning without a central-
ized planner. Our approach employs Distributed Constraint
Satisfaction (DisCSP) and Graph planning techniques. It
encompasses both of functional and non-functional plan-
nings.

1. Introduction

Planning is an important activity in many real life ap-
plications such as resource allocation or travel arrangement
[6]. The planning activity can be carried out centrally or
distributedly by a number of participants [2]. In the last ten
years, distributed environments and peer-to-peer network-
ing have been emerging as a popular paradigm. Conse-
quently, planning in distributed environments has become
one of major interests of AI and MAS community.

Despite that many active research have been carried out
on distributed planning [3] [5] [7], they have the follow-
ing two limitations. Firstly, most of existing work assume
that the planning are carried out by a set of agents who have
complete knowledge of the environment. Secondly, they of-
ten consider the functional and non-functional requirements
separately. The assumption of complete information does
not hold for dynamic and open environment such as the In-
ternet where unrelated organizations (i.e. agents) can col-
laborate to do business and form plans; nevertheless hardly
any single organization can possess the knowledge of ev-
ery other organization.The second limitation is rooted from
the difference in encoding of functional and non-functional

constraints. In non functional constraints, the variables
are QoS parameters [10] whereas they are activities or ser-
vices [11] in functional constraints. Combining these two
is not very natural and hence functional planning and QoS
planning are often treated as different but related problems.

Previously we have addressed the first limitation by
proposing a new method for distributed multi-agent plan-
ning where the agents have local knowledge of the environ-
ment and incomplete information of other agents [11]. In
this paper, we will show how QoS constraints can be effec-
tively incorporated into the method and hence address the
second limitation. With this incorporation, we solve both
QoS and functional constraints in parallel at the same time
and hence achieve more efficiency as compared to dealing
with them sequentially.

The paper is organized as follows. Section 2 describes
related work, followed by a description of our Dis-graph
Planning with QoS guarantee in section 3. And we present
the conclusion in Section 4.

2 Related work

Existing work on functional planning and non-functional
planning can be found at [8, 1, 4, 10]. Most of those work
focuses on centralized planning techniques. Recent dis-
tributed planning approaches [5, 9, 2] are in general influ-
enced by and extended from those centralized techniques.
Many centralized techniques and popular planners for func-
tional planning, such as [1] [8], employ Planning graph that
is a special graph based representation for a plan.

Current state of the art of distributed planning for func-
tional composition can be found in [5, 9, 2, 3, 7]. In those
work, distributed planning is in fact a process that combines
individual planning and coordination [2]. Individual agents
are acquainted with their own goals and then produce their
plans for their goals, except that before or after their indi-
vidual planning, they consider other agents’ plans to avoid
potential conflicts.

2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology

0-7695-3027-3/07 $25.00 © 2007 IEEE
DOI 10.1109/IAT.2007.87

275

2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology

0-7695-3027-3/07 $25.00 © 2007 IEEE
DOI 10.1109/IAT.2007.87

273

2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology

0-7695-3027-3/07 $25.00 © 2007 IEEE
DOI 10.1109/IAT.2007.87

273

2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology

0-7695-3027-3/07 $25.00 © 2007 IEEE
DOI 10.1109/IAT.2007.87

273

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 05:00:27 EDT from IEEE Xplore. Restrictions apply.

It is important to note that the above approaches are lim-
ited to problems that can be decomposed in the way they as-
sume the existence of some problem distributor agent. This
agent knows or has frequently updated information about
other agents, including their capabilities and surrounding
environments, in order to carry out the decomposition task.
Those approaches cannot scale up well for larger environ-
ments where an agent may only have partial, obsolete, or
even imprecise information about other agents and those
agents’ local environments. Consequently, an effective dis-
tribution of a plan based on agents’ capabilities is difficult.

To address the above limitation, we have previously ex-
plored DisCSP as an alternative for centralized CSP in solv-
ing planning problems in a distributed large scale network
where decomposition of a problem is difficult and imprac-
tical [11]. However the work is limited to functional plan-
ning only. Similarly, we have carried out work [10] on QoS
guarantees using DisCSP techniques, however those works
cannot be extended easily into functional composition.

3 Approach

We use graph planning for our approach. Generally,
graph based planning consists of two interleaved phases –
extending planning graph, and searching for valid plans.
However, instead of using a centralized planner, these two
phases are carried out distributedly in our approach. In the
first phase, agents collaborate to build and expand a plan-
ning graph. In the second phase, a DisCSP algorithm is used
by the agents to search for a valid plan. DisCSP has been
widely viewed as a powerful paradigm for solving combina-
torial problems arising in distributed, multi-agent environ-
ments.

3.1 Distributed Graph Planning

In this section we present a brief review of Distributed
Graph Planning (Dis-graph Planning). Detailed description
can be found in[11].

Dis-graph planning is a distributed extension of central-
ized Graph-based planning paradigm [4]. It enables agents
to generate a plan collectively in a distributed manner. For
distributed planning, we devise distributed planning graph
(dis-graph) based on the idea of planning graph. Similar to
a planning graph, a dis-graph consists of alternating levels
of states and services, except that the levels are distributed
among agents. As shown in Fig 1, each agent keeps a num-
ber of blocks which consist of consecutive levels of states
and services, and the blocks link together to form a com-
plete graph.

A dis-graph is compiled to a DisCSP to find a feasible
plan. The DisCSP algorithm we use is extended ABT with

Figure 1. Distributed Planning Graph

multi-variables[11]. Basically, the way of compiling Dis-
Graph to DisCSP is similar to that of compiling planning
graph to CSP as shown in [4], except that shared constraints
are involved to represent the links between the blocks, and a
number of dummy values (e.g TRUEOP and NULL) are in-
troduced to facilitate the shared constraints [11]. In princi-
ple, agents perform the following activities for the disgraph-
to-DisCSP mapping task:

1. Provide each state with a unique CSP variable number,
and each service with a unique CSP value number. The
mapping from states/services to numbers is maintained by
the agent locally.

2. Generate a variable for each state.
3. Generate constraints to represent the links between the

blocks, and the dependency and exclusion relation between
states and services within blocks.

3.2 QoS Constraints

For disgraph-to-DisCSP mapping w.r.t non functional
planning, we focus in this paper on three popular QoS pa-
rameters, namely time, cost and availability, and describe
how to encode them in CSP for the purpose of distributed
graph planning. The privacy protection is an important con-
cern of distributed graph planning. Different constraints re-
quire different level of information sharing. Here we focus
on the question: how far the individual agent’s information
can be kept private and what is necessarily to be shared for
the constraints.

Time Constraint
When making plans for real world problems, the starting

time, end time and duration of executing the services often
need to be included into consideration. For example, given
that the plan will start to execute at hour 0, the goal states
might be required to be achieved before hour 72 (within
3 days), and the service ”upload cargo” are executed only

276274274274

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 05:00:27 EDT from IEEE Xplore. Restrictions apply.

during working hours.In the meanwhile, an service can only
be executed after all its precondition states are achieved.

While the temporal constraint might be very simple or
complicated varying with the domains and the application
situations, here we present a CSP encoding that enables
agents to obtain the time points at which the states are
achieved and to specify the time points when the services
are able to execute. Based on this encoding various con-
straints can be developed and evaluated, which are beyond
the scope of this paper.

In order to present temporal constraints, we do the fol-
lowing steps:

1. For each state st, introduce a state time variable st time
to represent the time point when the state becomes true.

2. For each service ser, introduce an service start time
variable ser start to present the time point when the service
starts to execute, and an service end time variable ser end to
present the time point when the service finishes execution.

3. For each service ser 6= NOOP , and suppose ser has
execution duration value ser-dur, generate constraint st =
ser → ser end = ser start + ser dur

4. For each state st, if service ser has st as its effect,
generate the following constraint:

• If ser = NOOP and ser’s precondition is st’, st =
ser → st time = st’ time

else st=ser → st time ≥ ser end

• For all precondition states st1..stn of ser, generate a
constraint st = ser → ser start ≥ st1 time ∧
ser start ≥ st2 time ∧ ∧ ser start ≥ stn time

5. Initial state time: for each state st in the initial state
set, st time = 0

6. Goal state time: for state st in the goal state set, gen-
erate constraints as customer requirement, e.g. st time ≤
100 and st time ≥ 50.

It is straightforward to extend the goal time constraints to
the constraints on the start time and end time of any service.

It is obvious that the calculation of the goal states time
is a Critical Path Problem, so is the calculation of internal
states time. Since the agents do not possess the complete
planning graph, they are not able to identify the critical
path during planning. The agent has to share with its neigh-
bors the time of the states on the borders of planning graph
blocks.

E.g, in Fig 1, the time of P4 and P5 are necessarily to be
shared between Agent1 and Agent2, and the time of P6 and
P7 do not need to be shared.

Cost Constraint
It is often required to make sure the total cost of the ser-

vices in the plan does not exceed the budget. Similar con-
straints include those of total response time, total memory
usage, etc.

To encode cost constraints in CSP, the basic idea is to in-
troduce a service cost variable for each service in the plan-
ning graph to indicate the cost incurred by the service. A
variable total cost agt is introduced for each agent to in-
dicate the sum of the service cost variables of the services
in the agent’s planning graph blocks. Agents exchange their
total cost agt so that the sum of the costs from all the agents
is able to be calculated and evaluated against the budget
constraint.

While the encoding of cost constraint is similar to the
time constraint, except that the ”sum” operator is used
instead of relational operators, the allocation of the con-
straints is much different. In ABT, the higher priority agent
sends values to lower priority, and the lower one can not
send value to the higher one. Hence we assign the lowest
priority agent as the evaluator of global constraints.

We can implement it in two ways. In the first way, we
introduce an additional agent working as a representative
of the customer. It has the priority lower than all the plan-
ner agents and evaluates the values that are related to global
constraints. In the second way, we can assign the planner
with lowest priority to evaluate the global constraints. The
advantage of the first way is that the agents have clearly de-
fined roles. On one hand, the planner agents propose plans
without revealing their service information. On the other
hand, the customer representative agent checks the possi-
ble plans without reveal the amount it expects to pay, which
could be critical business secrets in many situations. The
advantage of the second way is that it does not need addi-
tional agent, and has the same CSP structure as the planning
without global constraints.

Note that it is straightforward to switch between the two
ways, we take the second way as example.Each agent agt
perform the following tasks:

1. Introduce an service cost variable ser cost for each
service ser. The possible values of the service cost variable
are 0 and the cost of ser.

2. Introduce a local total cost variable total costser.
3. Generate a constraint indicating that if service ser is

assigned to a state variable state, the cost of act is assigned
to the corresponding service cost variable ser cost, other-
wise 0 is assigned to ser cost.

4. Generate a constraint indicating that the value of
total costagt is the sum of the values of the service cost
variables, i.e total costagt=

∑all ser ser cost.
5. If agt is the lowest priority agent, generate a constraint

indicating that the sum of the total costagt of all the agents
is no higher than the amount specified by the customer, i.e∑all agt

total costagt ≤ given amount.
The evaluation of the cost does not care about the ”path”

or ”structure” of the planning graph. So agents can avoid re-
vealing the cost of individual services, and only the variable
of the sum value is necessarily shared.

277275275275

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 05:00:27 EDT from IEEE Xplore. Restrictions apply.

Availability Constraint
In this paper we define the availability of a single service

as the probability that the service is available for execution
during the period when the plan is expected to be executed.
We use a value ∈ [0..1] to indicate the availability. The
value can be obtained, e.g. by calculating the percentage
of the time the service is available in a specific history pe-
riod. The calculation of the availability of the plan can be of
various forms. We present a simple calculation, where the
availabilities of services are deemed as independent events,
and the overall availability of a plan is the product of the
availabilities of individual services.

Similar to the calculation of cost constraint, the calcula-
tion of availability does not care about the structure of plan-
ning graph. So the agents can avoid revealing the availabil-
ity of individual services by calculating the overall avail-
abilities of their planning graph blocks locally, and sharing
the overall availabilities with the global constraint evaluator
agent.

Each agent does the following tasks:
1. Introduce an service availability variable ser avi for

each service ser. The possible values of the service avail-
ability variable are 1 and the availability value of ser.

2. Introduce a local overall availability variable
overall aviagt.

3. Generate a constraint indicating that if service ser is
assigned to a state variable st, the availability value of ser is
assigned to the corresponding service availability variable
ser avi, otherwise 1 is assigned to ser avi.

4. Generate a constraint indicating that the value of
overall aviagt is the product of the service availability
variables, i.e overall aviagt =

∏all ser ser avi.
5. If agt is the lowest priority agent, generate a constraint

indicating that the product of the overall aviagt of all the
agents is no less than the availability required by the cus-
tomer, i.e∏all agt

overall aviagt ≤ required availability .

4 Conclusions

In this paper we have presented an approach to dis-
tributed multi-agent planning where the agents have sepa-
rate sets of services and intend to fulfill a task collabora-
tively. Our approach combines techniques from Distributed
Constraint Satisfaction and Graph planning fields. It has
following features:

-It is a decentralized planning algorithm, solving prob-
lems without collecting the knowledge from individual
agents.

-It limits the knowledge shared during planning and al-
lows agents to keep their privacy as much as possible.

-It removes the reliance on problem decomposition.

-It considers functional constraints and QoS constraints
in the same time.

Our approach combines techniques from Distributed
Constraint Satisfaction and Graph planning fields. It shows
the Planning Graph + CSP paradigm may succeed in dis-
tributed environment as it did in centralized centralized
planning environment.

In future work, extensive experiments will be carried out
to study the scalability and performance of the approach.

References

[1] A. Blum and M. Furst. Fast planning through planning graph
analysis. In Proceedings of the 14th International Joint Con-
ference on Artificial Intelligence (IJCAI 95), pages 1636–
1642, 1995.

[2] M. de Weerdt, A. ter Mors, and C. Witteveen. Multi-agent
planning: An introduction to planning and coordination. In
Handouts of the European Agent Summer School, pages 1–
32, 2005.

[3] K. S. Decker and V. R. Lesser. Generalizing the partial
global planning algorithm. International Journal of Intel-
ligent and Cooperative Information Systems, 1(2):319–346,
1992.

[4] M. B. Do and S. Kambhampati. Solving planning-graph by
compiling it into CSP. In Artificial Intelligence Planning
Systems, pages 82–91, 2000.

[5] E. H. Durfee. Distributed problem solving and planning. In
Multiagent systems: a modern approach to distributed ar-
tificial intelligence, pages 121–164. MIT Press, Cambridge,
MA, USA, 1999.

[6] E. H. Durfee and V. R. Lesser. Partial global planning: A
coordination framework for distributed hypothesis forma-
tion. IEEE Transactions on Systems, Man, and Cybernetics,
21(5):1167–1183, - 1991.

[7] E. Ephrati and J. S. Rosenschein. Multi–agent planning as
the process of merging distributed sub–plans. In Proceed-
ings of the 12th International Workshop on Distributed Arti-
ficial Intelligence, pages 115–129, 1993.

[8] A. Gerevini and I. Serina. Fast plan adaptation through plan-
ning graphs: Local and systematic search techniques. In
Proceedings of the 5th International Conference on Artifi-
cial Intelligence Planning Systems (AIPS-00), 2000.

[9] A. D. Mali and S. Kambhampati. Distributed planning. In
The Encyclopedia of Distributed Computing, Kluwer Aca-
demic Publishers, 2003.

[10] X. T. Nguyen and R. Kowalczyk. An agent based qos con-
flict mediation framework for web services compositions. In
Proceedings of the IEEE/WIC/ACM International Confer-
ence on Intelligent Agent Technology (IAT-06), pages 522–
528, USA, 2006. IEEE Computer Society.

[11] J. F. Zhang, X. T. Nguyen, and R. Kowalczyk. Graph based
multi-agent replanning algorithm. In Proceedings of The
Sixth International Joint Conference on Autonomous Agents
and Multi Agent Systems (AAMAS 2007), pages 793–800,
2007.

278276276276

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 05:00:27 EDT from IEEE Xplore. Restrictions apply.

